9 research outputs found

    Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [Zr-89]Zr-DFO-PEG(5)-Tz

    Get PDF
    The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-ofconcept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-89-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t(1/2) = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [Zr-89]Zr-DFO-PEG S -Tz ([Zr-89]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 +/- 0.2 vs 17.1 +/- 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for Zr-89-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.Peer reviewe

    Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [Zr-89]Zr-DFO-PEG(5)-Tz

    Get PDF
    The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-ofconcept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-89-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t(1/2) = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [Zr-89]Zr-DFO-PEG S -Tz ([Zr-89]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 +/- 0.2 vs 17.1 +/- 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for Zr-89-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics

    89Zr-immuno-PET in translational development of biopharmaceuticals

    Get PDF
    Biologicals gained attention over the past decades thanks to their therapeutic success especially in oncology. Positron Emission Tomography (PET) with Zirconium-89 is attractive thanks to 89Zr half-life (78.41h) matching the biological half-life of monoclonal antibodies (mAbs). We provide an overview of 89Zr-immuno-PET imaging using current and emerging radiolabeling tools and preclinical imaging to facilitate translation to the clinic of new antibody constructs. By improving the radiochemistry toolbox and better understanding quantification using preclinical PET cameras, new opportunities can be translated in the clinic. Chapter 1 introduces the current position of PET and 89Zr-immuno-PET imaging, in the context of biopharmaceuticals development while Chapter 2 gives an overview of current radiolabeling methods of biopharmaceuticals with 89Zr, 64Cu and 68Ga but also less common radiometals: 52Mn, 86Y, 66Ga, 44Sc, and 18F as in [18F]AlF. Chelator-radionuclide pairs and radiolabeling conditions are discussed along with recent preclinical and clinical trends. Chapter 3 evaluates with 89Zr-immuno-PET, CX-2009, a Probody Drug Conjugate (PDC) with a toxic DM4 payload attached. Probody® therapeutics possess antigen binding domains masked by peptide caps, only removed in the tumor environment by tumor-associated proteases, locally overexpressed. Probodies aim at widening the therapeutic window while PDCs at delivering selectively their payload to tumors via widely expressed antigens. We evaluated CX-2009 in CD166-positive lung cancer mice in comparison with its Probody, unmasked antibody drug conjugate, and parental mAb derivatives. Tumor uptake was similar for all constructs 72h p.i. demonstrating that CX-2009 can target CD166-expressing tumors and thus supporting clinical evaluation of Probody® therapeutics. In chapter 4, the novel octadentate chelator DFO* was studied in depth and compared with desferrioxamine (DFO), current standard for 89Zr-immuno-PET, DFOSq, also reported as potential successor of DFO and DFO*Sq included to evaluate the extra hydroxamate or squaramide group contribution to 89Zr complexation. [89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts. In breast cancer mice, DFO* derivatives were more stable than DFO derivatives especially in bones. DFOSq did not outperform the DFO derivative, suggesting that Sq is not improving in vivo stability. Cetuximab, directed against the Epidermal-Growth-Factor-Receptor was used in xenograft mice and again DFO* was superior over DFO regarding bone uptake. In an intratibial bone metastasis model, [89Zr]Zr-DFO*-trastuzumab, [89Zr]Zr-DFO-trastuzumab, [89Zr]Zr-DFO*-B12 and [89Zr]Zr-DFO-B12 (non-targeting control mAb) were evaluated and the DFO*-conjugate appeared superior over the DFO-conjugate with a tumour-specific signal in bone tumors. Chapter 5, provides in-depth comparison between PET imaging and ex vivo biodistribution quantification. We performed phantom studies with a NanoScan PET/CT and PET/MR with the most used PET radionuclides (11C, 68Ga, 18F and 89Zr). The cameras performed similarly: the highest recovery coefficient being with 18F, followed by 11C and 89Zr and finally 68Ga. Both scanners were evaluated after injection of [18F]FDG and [89Zr]Zr-DFO-NCS-trastuzumab in breast cancer mice and performed equally well regarding tumor quantification with PET-assessed uptake lower than ex vivo values. In brains, [18F]FDG-PET/ex vivo ratios were excellent suggesting that brain is suitable for quantitative imaging of 18F-tracers but not for 89Zr-radiolabeled-mAbs, probably due to poor brain penetration. In kidney and liver more disparities were observed. Preclinical cameras and ex vivo biodistribution quantification, requires fully described standardised protocols for reliability, reproducibility and inter-study comparisons. This research offers a state-of-the-art overview and promising developments regarding 89Zr-immuno-PET imaging. It provides new insights on preclinical studies including quantification with preclinical scanners and new tools for radiolabeling biologicals confirming 89Zr-immuno-PET imaging potential to evaluate new constructs. In vitro and in vivo superiority of the new chelator DFO* over the gold standard for clinical 89Zr-immuno-PET, DFO, was confirmed in various models, especially regarding bone uptake. DFO* is thus considered as the successor of DFO for clinical applications

    State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET

    No full text
    Inert and stable radiolabeling of monoclonal antibodies (mAb), antibody fragments, or antibody mimetics with radiometals is a prerequisite for immuno-PET. While radiolabeling is preferably fast, mild, efficient, and reproducible, especially when applied for human use in a current Good Manufacturing Practice compliant way, it is crucial that the obtained radioimmunoconjugate is stable and shows preserved immunoreactivity and in vivo behavior. Radiometals and chelators have extensively been evaluated to come to the most ideal radiometal-chelator pair for each type of antibody derivative. Although PET imaging of antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in recent years, especially in the clinical setting, while other less common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling of antibodies. This review presents a state of the art overview of the practical aspects of radiolabeling of antibodies, ranging from fast kinetic affibodies and nanobodies to slow kinetic intact mAbs. Herein, we focus on the most common approach which consists of first modification of the antibody with a chelator, and after eventual storage of the premodified molecule, radiolabeling as a second step. Other approaches are possible but have been excluded from this review. The review includes recent and representative examples from the literature highlighting which radiometal-chelator-antibody combinations are the most successful for in vivo application

    The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by 89Zr-immuno-PET in xenograft bearing mice

    No full text
    Probody® therapeutics are recombinant masked monoclonal antibody (mAb) prodrugs that become activated by proteases present in the tumor microenvironment. This makes them attractive for use as Probody drug conjugates (PDCs). CX-2009 is a novel PDC with the toxic drug DM4 coupled to an anti-CD166 Probody therapeutic. CD166 is overexpressed in multiple tumor types and to a lesser extent by healthy tissue. Methods: The tumor targeting potential of CX-2009 was assessed by performing 89Zr-immuno-PET/biodistribution/therapy studies in a CD166-positive H292 lung cancer mouse model. Head-to-head comparisons of CX-2009 with the Probody therapeutic without DM4 (CX-191), the unmasked antibody drug conjugate (ADC) CX-1031, and the parental mAb CX-090 were performed. All constructs were 89Zr labeled in a GMP compliant way, administered at 10, 110, or 510 µg, and ex vivo biodistribution was assessed at 24, 72, and 168 hours post-injection. Results: Comparable biodistribution was observed for all constructs, confirmed with PET/CT. Tumors showed the highest uptake: 21.8 ± 2.3 ([89Zr]Zr-CX-2009), 21.8 ± 5.0 ([89Zr]Zr‑CX-191), 18.7 ± 2.5 ([89Zr]Zr-CX-1031) and 20.8 ± 0.9 %ID/g ([89Zr]Zr-CX-090) at 110 µg injected. Increasing the dose to 510 µg resulted in lower tumor uptake and higher blood levels for all constructs, suggesting receptor saturation. In addition, CX-2009 and CX-1031 showed similar therapeutic potential. Conclusions: CX-2009 is optimally capable of targeting CD166-expressing tumors when compared with its derivatives, implying that enzymatic activation inside the tumor, required to allow CD166 binding, does not limit tumor targeting. Because CX-2009 does not bind to mouse CD166, however, reduced targeting of healthy organs should be confirmed in ongoing clinical 89Zr-immuno-PET studies

    Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-D-aspartate receptor

    No full text
    The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism

    Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice

    No full text
    Abstract Introduction The assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models. Methods NEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~ 14 MBq), kept 50 min under anesthesia followed by imaging for 20 min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~ 5 MBq) and imaged 3 days post-injection for 45 min. After PET acquisition, animals were killed and organs of interest were collected and measured in a γ-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland–Altman plots. Results In phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8–0.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used. Conclusions Our study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility

    Head-to-head comparison of DFO* and DFO chelators: selection of the best candidate for clinical 89Zr-immuno-PET

    No full text
    PURPOSE: Almost all radiolabellings of antibodies with 89Zr currently employ the hexadentate chelator desferrioxamine (DFO). However, DFO can lead to unwanted uptake of 89Zr in bones due to instability of the resulting metal complex. DFO*-NCS and the squaramide ester of DFO, DFOSq, are novel analogues that gave more stable 89Zr complexes than DFO in pilot experiments. Here, we directly compare these linker-chelator systems to identify optimal immuno-PET reagents. METHODS: Cetuximab, trastuzumab and B12 (non-binding control antibody) were labelled with 89Zr via DFO*-NCS, DFOSq, DFO-NCS or DFO*Sq. Stability in vitro was compared at 37 °C in serum (7 days), in formulation solution (24 h ± chelator challenges) and in vivo with N87 and A431 tumour-bearing mice. Finally, to demonstrate the practical benefit of more stable complexation for the accurate detection of bone metastases, [89Zr]Zr-DFO*-NCS and [89Zr]Zr-DFO-NCS-labelled trastuzumab and B12 were evaluated in a bone metastasis mouse model where BT-474 breast cancer cells were injected intratibially. RESULTS: [89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts under all conditions. While tumour uptake was similar for all conjugates, bone uptake was lower for DFO* conjugates. Lower bone uptake for DFO* conjugates was confirmed using a second xenograft model: A431 combined with cetuximab. Finally, in the intratibial BT-474 bone metastasis model, the DFO* conjugates provided superior detection of tumour-specific signal over the DFO conjugates. CONCLUSION: DFO*-mAb conjugates provide lower bone uptake than their DFO analogues; thus, DFO* is a superior candidate for preclinical and clinical 89Zr-immuno-PET
    corecore